WORKSHEET 2 ON VECTORS

Work the following on notebook paper. Use your calculator on problems 7 - 11 only.

1. If $x=e^{2 t}$ and $y=\sin (3 t)$, find $\frac{d y}{d x}$ in terms of t.
2. Write an integral expression to represent the length of the path described by the parametric equations $x=\cos ^{3} t$ and $y=\sin ^{2} t$ for $0 \leq t \leq \frac{\pi}{2}$.
3. For what value(s) of t does the curve given by the parametric equations $x=t^{3}-t^{2}-1$ and $y=t^{4}+2 t^{2}-8 t$ have a vertical tangent?
4. For any time $t \geq 0$, if the position of a particle in the $x y$-plane is given by $x=t^{2}+1$ and $y=\ln (2 t+3)$, find the acceleration vector.
5. Find the equation of the tangent line to the curve given by the parametric equations $x(t)=3 t^{2}-4 t+2$ and $y(t)=t^{3}-4 t$ at the point on the curve where $t=1$.
6. If $x(t)=e^{t}+1$ and $y=2 e^{2 t}$ are the equations of the path of a particle moving in the $x y$-plane, write an equation for the path of the particle in terms of x and y.
7. A particle moves in the $x y$-plane so that its position at any time t is given by $x=\cos (5 t)$ and $y=t^{3}$. What is the speed of the particle when $t=2$?
8. The position of a particle at time $t \geq 0$ is given by the parametric equations $x(t)=\frac{(t-2)^{3}}{3}+4$ and $y(t)=t^{2}-4 t+4$.
(a) Find the magnitude of the velocity vector at $t=1$.
(b) Find the total distance traveled by the particle from $t=0$ to $t=1$.
(c) When is the particle at rest? What is its position at that time?
9. An object moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time with $\frac{d x}{d t}=1+\tan \left(t^{2}\right)$ and $\frac{d y}{d t}=3 e^{\sqrt{t}}$. Find the acceleration vector and the speed of the object when $t=5$.
10. A particle moves in the $x y$-plane so that the position of the particle is given by $x(t)=t+\cos t$ and $y(t)=3 t+2 \sin t, \quad 0 \leq t \leq \pi$. Find the velocity vector when the particle's vertical position is $y=5$.
11. An object moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time t with $\frac{d x}{d t}=2 \sin \left(t^{3}\right)$ and $\frac{d y}{d t}=\cos \left(t^{2}\right)$ for $0 \leq t \leq 4$. At time $t=1$, the object is at the position $(3,4)$.
(a) Write an equation for the line tangent to the curve at $(3,4)$.
(b) Find the speed of the object at time $t=2$.
(c) Find the total distance traveled by the object over the time interval $0 \leq t \leq 1$.
(d) Find the position of the object at time $t=2$.
12. A particle moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time t with $\frac{d x}{d t}=\arcsin \left(\frac{t}{t+4}\right)$ and $\frac{d y}{d t}=\ln \left(t^{2}+3\right)$. At time $t=1$, the particle is at the position $(5,6)$.
(a) Find the speed of the object at time $t=2$.
(b) Find the total distance traveled by the object over the time interval $1 \leq t \leq 2$.
(c) Find $y(2)$.
(d) For $0 \leq t \leq 3$, there is a point on the curve where the line tangent to the curve has slope 8. At what time $t, 0 \leq t \leq 3$, is the particle at this point? Find the acceleration vector at this point.

Answers to Worksheet 2 on Vectors

1. $\frac{3 \cos (3 t)}{2 e^{2 t}}$
2. $\int_{0}^{\pi / 2} \sqrt{9 \cos ^{4} t \sin ^{2} t+4 \sin ^{2} t \cos ^{2} t} d t$
3. $t=0$ and $t=\frac{2}{3}$
4. $v(t)=\left\langle 2 t, \frac{2}{2 t+3}\right\rangle, a(t)=\left(2,-\frac{4}{(2 t+3)^{2}}\right)$
5. $y+3=-\frac{1}{2}(x-1)$
6. $y=2 x^{2}-4 x+2$.
7. 12.304
8. (a) $\sqrt{5}$
(b) 3.816
(c) At rest when $t=2$. Position $=(4,0)$
9. $a(5)=\langle 10.178,6.277\rangle$, speed $=28.083$
10. $\langle 0.119,3.944\rangle$
11. (a) $y-4=0.321(x-3)$
(b) 2.084
(c) 1.126
(d) $(3.436,3.557)$
12. (a) 2.061
(b) 1.738
(c) 7.661
(d) $\langle 0.422,0.179\rangle$
