CALCULUS BC WORKSHEET 2 ON VECTORS

Work the following on <u>notebook paper</u>. Use your calculator on problems 7 - 11 only.

1. If
$$x = e^{2t}$$
 and $y = \sin(3t)$, find $\frac{dy}{dx}$ in terms of t.

2. Write an integral expression to represent the length of the path described by the parametric equations $x = \cos^3 t$ and $y = \sin^2 t$ for $0 \le t \le \frac{\pi}{2}$.

3. For what value(s) of t does the curve given by the parametric equations $x = t^3 - t^2 - 1$ and $y = t^4 + 2t^2 - 8t$ have a vertical tangent?

- 4. For any time $t \ge 0$, if the position of a particle in the *xy*-plane is given by $x = t^2 + 1$ and $y = \ln(2t+3)$, find the acceleration vector.
- 5. Find the equation of the tangent line to the curve given by the parametric equations $x(t) = 3t^2 4t + 2$ and $y(t) = t^3 4t$ at the point on the curve where t = 1.
- 6. If $x(t) = e^t + 1$ and $y = 2e^{2t}$ are the equations of the path of a particle moving in the *xy*-plane, write an equation for the path of the particle in terms of *x* and *y*.
- 7. A particle moves in the *xy*-plane so that its position at any time *t* is given by x = cos(5t) and $y = t^3$. What is the speed of the particle when t = 2?
- 8. The position of a particle at time $t \ge 0$ is given by the parametric equations

$$x(t) = \frac{(t-2)^3}{3} + 4$$
 and $y(t) = t^2 - 4t + 4$.

- (a) Find the magnitude of the velocity vector at t = 1.
- (b) Find the total distance traveled by the particle from t = 0 to t = 1.
- (c) When is the particle at rest? What is its position at that time?
- 9. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time with

$$\frac{dx}{dt} = 1 + \tan(t^2)$$
 and $\frac{dy}{dt} = 3e^{\sqrt{t}}$. Find the acceleration vector and the speed of the object when $t = 5$.

- 10. A particle moves in the *xy*-plane so that the position of the particle is given by $x(t) = t + \cos t$ and $y(t) = 3t + 2\sin t$, $0 \le t \le \pi$. Find the velocity vector when the particle's vertical position is y = 5.
- 11. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = 2\sin(t^3)$
 - and $\frac{dy}{dt} = \cos(t^2)$ for $0 \le t \le 4$. At time t = 1, the object is at the position (3, 4).
 - (a) Write an equation for the line tangent to the curve at (3, 4).
 - (b) Find the speed of the object at time t = 2.
 - (c) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
 - (d) Find the position of the object at time t = 2.

12. A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t with

 $\frac{dx}{dt} = \arcsin\left(\frac{t}{t+4}\right)$ and $\frac{dy}{dt} = \ln\left(t^2+3\right)$. At time t = 1, the particle is at the position (5, 6).

- (a) Find the speed of the object at time t = 2.
- (b) Find the total distance traveled by the object over the time interval $1 \le t \le 2$.
- (c) Find y(2).
- (d) For $0 \le t \le 3$, there is a point on the curve where the line tangent to the curve has slope 8. At what time t, $0 \le t \le 3$, is the particle at this point? Find the acceleration vector at this point.

Answers to Worksheet 2 on Vectors

Answers to Worksheet 2 on Vectors
1.
$$\frac{3\cos(3t)}{2e^{2t}}$$
 2. $\int_{0}^{\frac{\pi}{2}} \sqrt{9\cos^{4}t\sin^{2}t + 4\sin^{2}t\cos^{2}t} dt$
3. $t = 0$ and $t = \frac{2}{3}$ 4. $v(t) = \left\langle 2t, \frac{2}{2t+3} \right\rangle$, $a(t) = \left(2, -\frac{4}{(2t+3)^{2}}\right)$
5. $y+3 = -\frac{1}{2}(x-1)$ 6. $y = 2x^{2} - 4x + 2$.
7. 12.304
8. (a) $\sqrt{5}$ (b) 3.816 (c) At rest when $t = 2$. Position = (4, 0)
9. $a(5) = \langle 10.178, 6.277 \rangle$, speed = 28.083 10. $\langle 0.119, 3.944 \rangle$
11. (a) $y-4 = 0.321(x-3)$ (b) 2.084 (c) 1.126 (d) (3.436, 3.557)
12. (a) 2.061 (b) 1.738 (c) 7.661 (d) $\langle 0.422, 0.179 \rangle$