Calculus Section 2.4 Chain Rule Part II, Absolute Value

- -Find the derivative using the chain rule in conjunction with the product and quotient rules.
- -Find the derivative using the chain rule multiple times.
- -Determine the derivative of absolute value functions.

Homework: Page 136 #'s 55, 63, 103, 104, 119-122, 125, 126

Repeated Application of the Chain Rule

In order to differentiate certain functions, the chain rule may have to be applied more than one time.

Examples)

1)
$$y = \sin^3 4t$$

 $y = (\sin(4t))^3$
 $y' = 3(\sin(4t))^3 \cdot \cos(4t) \cdot 4$
 $y' = 12 \sin^2(4t)\cos(4t)$

2)
$$y = (\sin 2x + 4x^2)^4$$

 $y' = 4(\sin 2x + 4x^2)^3 \cdot (\cos 2x \cdot 2 + 8x)$
 $y' = 4(\sin 2x + 4x^2)^3 \cdot (2\cos 2x + 8x)$

The Chain Rule Combined with Other Derivative Rules Examples)

3)
$$f(x) = (2x-1)^2 \csc 2x$$

 $f'(x) = (2x-1)^2 \cdot [(-\csc 2x \cot 2x) \cdot 2] + \csc 2x \cdot [2(2x-1) \cdot 2]$
 $f'(x) = -2(2x-1)^2 \csc 2x \cot 2x + 4 \csc 2x \cdot (2x-1)$

Absolute Value Functions

The trick for finding the derivative of an absolute value function is to realize that $|u| = \sqrt{u^2}$. Chain rule takes over after you substitute.

Ex) Determine:
$$\frac{d}{dx}[|x^2-4|]$$

$$\frac{d}{dx}\left[\left(\left(x^2-4\right)^2\right)^{1/2}\right]$$

$$\frac{d}{dx}\left[\left(\left(x^2-4\right)^2\right)^{1/2}\right]$$

$$\frac{1}{2}\left(\left(x^2-4\right)^2\right)^{-1/2} \cdot 2\left(x^2-4\right) \cdot 2x$$

$$\frac{x^2-4}{\sqrt{x^2-4}} \cdot 2x$$

$$= \frac{x^2-4}{\sqrt{x^2-4}} \cdot 2x$$

Derivative of Absolute Value Functions

The general rule for the derivative of an absolute value function is:

$$\frac{d}{dx}[|u|] = \frac{U}{|U|} \cdot du$$

Ex) Write the equation of the line tangent to $g(x) = |x^3 + 3x|$ when x = 2.

$$g'(x) = \frac{x^{3} + 3x}{|x^{3} + 3x|} \cdot (3x^{2} + 3)$$

$$g(2) = |2^{3} + 6|$$

$$g(2) = |4|$$

$$g'(2) = \frac{14}{14} \cdot (17)$$

$$g'(2) = 17$$

$$y - |4| = |7(x - 2)|$$