Name: \qquad
1)

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.
(a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.
(b) Explain why there must be a value c for $1<c<3$ such that $h^{\prime}(c)=-5$.
2) 1998 \#91 (AB but suitable for BC) - Calc OK:Let f be a function that is differentiable on the open interval $(1,10)$. If $f(2)=-5, f(5)=5$, and $f(9)=-5$, which of the following must be true?
I. f has at least 2 zeros.
II. The graph of f has at least one horizontal tangent.
III. For some $c, 2<c<5, f(c)=3$.
a. None
c. I and II only
e. I, II and III
b. I only
d. I and III only
3) $\mathbf{2 0 0 3}$ \#80 (AB but suitable for BC) - Calc OK: The function f is continuous for $-2 \leq x \leq 1$ and differentiable for $-2<x<1$. If $f(-2)=-5$ and $f(1)=4$, which of the following statements could be false?
a. There exists c, where $-2<c<1$, such that $f(c)=0$.
b. There exists c, where $-2<c<1$, such that $f^{\prime}(c)=0$.
c. There exists c, where $-2<c<1$, such that $f(c)=3$.
d. There exists c, where $-2<c<1$, such that $f^{\prime}(c)=3$.
e. There exists c, where $-2 \leq c \leq 1$ such that $f(c) \geq f(x)$ for all x on the closed interval $-2 \leq x \leq 1$.
4) 1998 \#4 (AB but suitable for BC) - No Calc: If f is continuous for $a \leq x \leq b$ and differentiable for $a<x<b$, which of the following could be false?
a. $\quad f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ for some c such that $a<\mathrm{c}<b$.
b. $f^{\prime}(c)=0$ for some c such that $a<c<b$.
c. f has a minimum value on $a \leq x \leq b$.
d. f has a maximum value on $a \leq x \leq b$.
5) The value of c guaranteed to exist by the Mean Value Theorem for $V(x)=x^{2}$ in the interval $[0,3]$ is
A) 1
B) 2
C) $3 / 2$
D) $1 / 2$
E) None of these
6) If $P(x)$ is continuous in $[k, m]$ and differentiable in (k, m), then the Mean Value Theorem states that there is a point a between k and m such that
A) $\frac{P(k)-P(m)}{m-k}=P^{\prime}(a)$
B) $P^{\prime}(a)(k-m)=P(k)-P(m)$
C) $\frac{m-k}{P(m)-P(k)}=a$
D) $\frac{m-k}{P(m)-P(k)}=P^{\prime}(a)$
E) None of these
7) The Mean Value Theorem does not apply to $f(x)=|x-3|$ on $[1,4]$ because
A) $f(x)$ is not continuous on $[1,4]$
B) $f(x)$ is not differentiable on $(1,4)$
C) $f(1) \neq f(4)$
D) $f(1)>f(4)$
8) Train A runs back and forth on an east-west section of railroad track. Train A 's velocity, measured in meters per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Selected values for $v_{A}(t)$

t (minutes)	0	2	5	8	12
$v_{A}(t)$ (meters /minute)	0	100	40	-120	-150

(a) Find the average acceleration of $\operatorname{train} A$ over the interval $2 \leq t \leq 8$.
(b) Do the data in the table support the conclusion that train A 's velocity is -100 meters per minute at some time t with $5<t<8$? Give a reason for your answer.

