Calculus Section 4.1 Antiderivatives and Indefinite Integration

- -Write the general solution of a differential equation.
- -Use indefinite integral notation for antiderivatives.
- -Use basic integration rules to find antiderivatives.

Homework: page 251 #'s 11 – 23, 69, 72, 73, 74

Antiderivatives

A function f(x) is an **antiderivative** of g(x) if f'(x) = g(x) for all x.

Example)

If $f(x) = 3x^2$, what is the antiderivative of f(x)?

x³ because the derivative of
$$x^3$$
 is $\frac{d}{dx}[x^3] = 3x^3$

The antiderivative for the function f(x) is just <u>an</u> antiderivative not <u>the</u> antiderivative. There can be infinitely many antiderivatives for any function f(x).

Example)

What is the antiderivative of $f(x) = 4x^3$?

ff(x) =
$$4x^3$$
?
 $\chi^4 + 3$ or $\chi^4 - 5$ or $\chi^4 + \pi$ or $\chi^4 + e$ $\chi^4 + e$ where c is any constant

*******The antiderivative MUST have a +C, the constant of integration.*******

The operation of finding the antiderivative is called antidifferentiation or <u>indefinite</u> integration

Integral symbol variable of integration

$$\int f'(x) dx = f(x) + C$$
Integral of integration integration

Basic Integration Rules (other examples found on p. 246 and inside the front cover of the book)

$$\int 0 dx = 0x + C = C$$

$$\int k dx = Kx + C$$

$$\int k f'(x) dx = K \int f'(x) dx = K f(x) + C$$

$$\int [f'(x) + g'(x)] = f(x) + g(x) + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} \leftarrow \text{integration "power rule"}$$

Examples)

Integrate the following functions to find the antiderivative.

1)
$$\int 3x dx$$

$$\frac{3}{2} \times C$$

2)
$$\int \frac{1}{x^2} dx$$

$$\int x^{-2} dx$$

$$\frac{x^{-1} + C}{x}$$

3)
$$\int \sqrt{t} dt$$

$$\int \frac{t^{3/2}}{3/2} dt$$

$$\frac{t^{3/2}}{3/2} + C$$

$$\frac{2}{3} t^{3/2} + C$$

4)
$$\int (y+2)dy$$

$$\frac{1}{2}y^2 + 2y + C$$

5)
$$\int (2\theta^2 - 3\theta + 1)d\theta$$

$$\frac{2}{3}\theta^3 - \frac{3}{2}\theta^3 + \theta + C$$

6)
$$\int \frac{x+1}{\sqrt{x}} dx$$

$$\int \left(\frac{x}{x^{1/2}} + \frac{1}{\sqrt{x}}\right) dx$$

$$\int \left(\frac{x^{1/2}}{x^{1/2}} + \frac{1}{\sqrt{x}}\right) dx$$

$$\left(\frac{2}{3} + \frac{3}{x^{1/2}} + 2 + \frac{1}{x^{1/2}}\right) dx$$