\qquad

1. Find the derivatives of the functions defined by the following integrals:
(a) $\int_{0}^{x} \frac{\sin t}{t} d t$
(b) $\int_{0}^{x} e^{-t^{2}} d t$
(c) $\int_{1}^{\cos x} \frac{1}{t} d t$
(d) $\int_{0}^{1} e^{\tan ^{2} t} d t$
(e) $\int_{x}^{x^{2}} \frac{1}{2 t} d t, x>0$
(f) $\int_{x}^{2} \cos \left(t^{2}\right) d t$
2. The graph of a function f consists of a semicircle and two line segments as shown. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find $g(0), g(3), g(-2)$, and $g(5)$.

(b) Find all values of x on the open interval $(-2,5)$ at which g has a relative maximum. Justify your answers.
(c) Find the absolute minimum value of g on the closed interval $[-2,5]$ and the value of x at which it occurs. Justify your answer.
3. Given $f(x)=\int_{-2}^{x^{2}} \cos \left(t^{2}\right) d t$. Determine the second derivative of f.
4. The velocity of a car accelerating from a red light is given by $\mathrm{v}(\mathrm{t})=\frac{6}{5} x^{2}+\frac{1}{2} x$. Find the average velocity of the car for the first 6 seconds after the light turns green.
5. Find the average value of the functions over the given intervals.
a) $f(x)=9-x^{2}[-3,3]$
b) $f(x)=x^{3}[0,1]$
c) $f(x)=\sin x[0, \pi]$
6. (Calculator) A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon $(t=0)$ and $8 \mathrm{p} . \mathrm{m} .(t=8)$. The number of entries in the box t hours after noon is modeled by a differentiable function E for $0 \leq \mathrm{t} \leq 8$. Values of $\mathrm{E}(\mathrm{t})$, in hundreds of entries, at various times t are shown in the table below.
(a) Use the data in the table to approximate the rate, in hundreds of entries per hour, at which entries were being deposited at time $t=6$. Show the computations leading to your answer.

t (hours)	0	2	5	7	8
$E(t)$ (hundreds of entries)	0	4	13	21	23

(b) Use a trapezoidal sum with four subintervals given by the table to approximate the value of $\frac{1}{8} \int_{0}^{8} E(t) d t$. Using correct units, explain the meaning of $\frac{1}{8} \int_{0}^{8} E(t) d t$ in terms of the number of entries.
(c) At 8 p.m., volunteers began to process the entries. They processed the entries at a rate modeled by the function P, where $P(t)=t^{3}-30 t^{2}+298 t-976$ hundreds of entries per hour for $8 \leq t \leq 12$. According to the model, how many entries had not yet been processed by midnight?

