\qquad

1) Determine whether the function $y=3 \cos (2 x)$ is a solution of the differential equation $y^{(4)}-16 y=0$.
2) Determine whether the function $y=x^{2} e^{x}$ is a solution to the differential equation $x y^{\prime}-2 y=x^{3} e^{x}$.
3) Match the slope fields with the differential equations. Draw a line to connect each pair.

$\frac{d y}{d x}=\sin (2 x)$
$\frac{d y}{d x}=\frac{1}{2} \cos x$
$\frac{d y}{d x}=e^{-2 x}$
$\frac{d y}{d x}=\frac{1}{x}$

Draw the slope field for each differential equation on the points provided in the graph. Draw the particular solution for each differential equation through the indicated point.
5) $y^{\prime}=3-x$;
$(0,1)$

6) $y^{\prime}=x+y ; \quad(1,0)$

7) $y^{\prime}=x y-y ; \quad(-1,1)$

