Calculus Section 6.3 Logistic Growth

In exponential growth, we assume that the rate of increase (or decrease) of a population at any time t is

directly proportional to the population P. In other words, (;—P = kP.. However, in many situations population
t

growth levels off and approaches a limiting number L (the carrying capacity) because of limited resources. In
* this situation the rate of increase (or decrease} is directly proportional to both P and L— P. This type of

growth is called logistic growth. It is modeled by the differential equation ‘;—I: =kP(L-P).

2
if we find ‘f{f, we can find out an important fact about the time when P is growing the fastest.
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Example) The population P( ) of fish in a lake satisfies the logistic differential equation % =3P - 6_50-6
where t is measured in years, and P(0)=4000.
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(a) lim P(r) = | 8000 (b) What is the range of the solution curve?
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(c) For what values of P is the solution curve increasing? Decreasing? Justify your answer.
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{(d) For what values of P is the solution curve concave up? Concave down? Justify your answer. 3000
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(e) Does the solution curve have an inflection point? lustify your answer.,
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{f) Use the information you found to sketch the graph of P(t) .
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Example) The population P(¢) of fish in a lake satisfies the logistic differential equation P _3p_ P

dt 6000
. . _ AP
where t is measured in years, and P(0)=10,000. ot GM P([Z(Jao P
(a) lim P(t) = | 2000 {b) What is the range of the solution curve?
=@ t

10000 < P< 18000
(c) For what values of P is the solution curve increasing? Decreasing? Justify your answer.
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(d} For what values of P is the solution curve concave u;;? Concave down? Justify your answer.
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(e) Does the solution curve have an inflection point? Justify your answer.
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{f} Use the information you found to sketch the graph ofP(t).
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Ex. 3 The population P(t) of fish in a lake satisfies the logistic differential equation

!

dp —L_p(t3cwo -F)
daP P’ dE " 6u P(

— =3P - ——, where t is measured in years, and P{0)=20,000.

dt 6000’

(a) lim P(t)= (2000 (b) What is the range of the solution curve? (3000 = £ £ 20009

(c) For what values of P is the solution curve increasing? Decreasing? Justify your answer.
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(d) For what values of P is the solution curve concave up? Concave down? Justify your answer.
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e

(e) Does the solution curve have an inflection point? Justify your answer.
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{f) Use the information you found to sketch the graph of P(¢) perrm m T T =




