Calculus Section 7.4 Arc Length and Surfaces of Revolution

- -Find the length of an arc
- -Find the area of a surface of revolution

Homework: page 473 #'s 3, 11, 13, 21, 38, 43, 44, 47

Arc Length

The length of a curve is found by summing small segments using distance formula.

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2 \left(\frac{\Delta x}{\Delta x}\right)^2} \quad \text{multiply by "1"}$$

$$\Delta x$$

$$d = \sqrt{(\Delta x)^2 + \left(\frac{\Delta y}{\Delta x}\right)^2 (\Delta x)^2}$$

pull DX in with by

$$d = \sqrt{(\Delta x)^2 \left(1 + \left(\frac{\Delta y}{\Delta x}\right)^2\right)}$$

factor DX2

$$d = \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2} \, (\Delta x)$$

take square rost DX2 to bring out of J

$$d = \sqrt{1 + f'(x)^2} (\Delta x)$$

Ay is the slope, slope is f(x)

$$length = \int_{a}^{b} \sqrt{1 + f'(x)^2} dx$$

if DX is infinitely small, take an integral to add up all the little pieces

Examples)

Find the arc length of $f(x) = x^2$ on the interval [-1, 1].

Find the arc length of $y = \frac{3}{2}x^{2/3}$ on the interval [1, 8].

$$f(x) = x^{2}$$

 $f(x) = 2x$
 $length = \int \int 1 + (2x)^{2} dx$

$$y = \frac{3}{3} x^{2/3}$$

 $y' = x^{-1/3}$
 $y' = x^{-1/3}$
 $y' = x^{-1/3}$
 $y' = x^{-1/3}$

length = 2.958

Surface of Revolution

We can combine the concepts of volume by rotation and arc length to find the surface area of a solid of revolution.

Horizontal axis of rotation

where r(x) and r(y) are perpendicular to the axis of revolution.

Example)

Find the area of the surface of revolution formed by revolving the graph of $f(x) = x^3$ on the interval [0, 1] about the x-axis.

$$S = 2\pi \int_{0}^{1} x^{3} \sqrt{1 + (3x^{2})^{2}} dx$$

Example)

Find the area of the surface formed by revolving the graph of $f(x) = x^2$ on the interval $[0, \sqrt{2}]$ about the y-axis.

Gabriel's Horn

Gabriel's Horn is the name given to the 3-d figure created when the function $f(x) = \frac{1}{x}$ on the interval [1, ∞] is revolved about the x-axis. Gabriel's Horn is a paradox because it has finite volume yet infinite surface area.

$$f(x) = x^{-1}$$

$$L(x) = -X$$

$$V = \pi \int_{0}^{\infty} (\frac{1}{x})^{2} dx$$

$$V = \pi \left[-\frac{1}{\omega} - \frac{1}{1} \right]$$

$$S = 2\pi \int_{0}^{\infty} \frac{1}{x} \sqrt{1 + (-x^{2})^{2}} dx$$

$$V = \pi \int_{0}^{\infty} x^{2} dx$$

$$S = 2\pi \int_{-\infty}^{\infty} \frac{1}{x} \sqrt{1 + (-x^{-2})^{2}} dx$$

$$\int_{1}^{\infty} \frac{1}{x} = \left| \ln |x| \right|_{1}^{\infty} = \left| \ln \cos - \ln 1 \right|_{1}^{\infty}$$

$$\sqrt{1+\frac{1}{x^2}} \geq \frac{1}{x}$$
 50 $S=\infty$