Calculus Section 9.5 Alternating Remainder and Conditional/Absolute Convergence

- -Use the Alternating Series Remainder to determine convergence
- -Classify convergence as absolute or conditional

Homework: page #625 #'s 30 – 32, 37 – 47 odd, 61, 62

Alternating Series Remainder

If an alternating series converges, then the sum of the series can be approximated by the partial sum S_n . The error associated with this sum is less than or equal to the first neglected term (the n + 1 term).

Remainder = Maximum Error = $|S - S_n| \le a_{n+1}$

Example) Approximating the Sum of an Alternating Series

Use the 4th partial sum to approximate the sum of the series. Determine a reasonable interval for the actual sum of the series. Is the partial sum S₄ an over or underestimate?

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n!} = \frac{1}{1} - \frac{1}{2} + \frac{1}{6} - \frac{1}{24} + \frac{1}{120}$$

Sum:
$$\frac{5}{8} - \frac{1}{120} \le \text{Sum} \le \frac{5}{8} + \frac{1}{120}$$

Sy is an underestimate of the actual sum because the last term was subtracted.

Example) What alternating series partial sum will have an error less than or equal to 0.001.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$$

$$\frac{1}{2n-1} \leq \frac{1}{1000}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)!}$$

$$\frac{1}{(n+1)!} \leq \frac{1}{1000}$$

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{24}$ $\frac{1}{120}$ $\frac{1}{720}$ $\frac{1}{500}$

Example) Given $P_n(x) = \sum_{k=1}^n (-1)^k \frac{x^k}{k^2 + k + 1}$. What is the smallest number M for which the alternating error bound guarantees that $|f(1) - P_4(1)| \le M$?

M will come from the 5th term since $P_4(1)$ is the 4th partial sum. X=1 because the sum is for $F(1)-P_4(1)$; K=5.

$$(-1)^{5} \frac{1^{5}}{5^{2}+5+1} = \frac{-1}{25+5+1} = \frac{-1}{31}$$

Definitions of Absolute and Conditional Convergence

A series converges absolutely (is absolutely convergent) if $\sum |a_n|$ converges.

A series **converges conditionally** (is conditionally convergent) if $\sum a_n$ converges but $\sum |a_n|$ diverges.

A conditionally convergent series converges only on the condition that it alternates (classic example: harmonic series) whereas an absolutely convergent series will converge whether it alternates or not.

Example) Does the series converge absolutely, converge conditionally, or diverge?

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2}}$$

$$\frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}}$$

$$\frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}}$$

$$\frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}}$$

$$\frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n^2}} + \frac{1}{\sqrt[3]{n$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{\frac{n^2+n}{2}}}{3^n}$$

$$\frac{-1}{3} - \frac{1}{9} + \frac{1}{27} + \frac{1}{31} - \frac{1}{243} - \frac{1}{729}$$

$$\sum_{n=1}^{\infty} \frac{1}{3^n} \quad \text{converges by geometric}$$

$$\text{test. So } \sum_{n=1}^{\infty} \frac{(-1)^{\frac{n^2+n}{2}}}{3^n} \quad \text{converges}$$

$$\text{absolutely.}$$