3.1-3.6 Practice AP Questions

Name: \qquad

1) The graph of $y=3 x^{2}-x^{3}$ has a relative maximum at
(A) $(0,0)$ only
(B) $(1,2)$ only
(C) $(2,4)$ only
(D) $(4,-16)$ only
(E) $(0,0)$ and $(2,4)$
2) If the graph of $f(x)=2 x^{2}+k / x$ has a point of inflection at $x=-1$, then the value of k is
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
3) What are all value of x for which the graph of $y=\frac{2}{4-x}$ is concave downward?
(A) No values of x
(B) $x<4$
(C) $x>-4$
(D) $x<-4$
(E) $x>4$
4) The functions f and g are piecewise linear functions whose graph are shown below. If $h(x)=f(x) g(x)$, then $h^{\prime}(3)=$
(A) $-8 / 3$
(B) $-1 / 3$
(C) 0
(D) $2 / 3$
(E) $8 / 3$

5) At what value(s) of x does $f(x)=x^{4}-8 x^{2}$ have a relative minimum?
(A) 0 and - 2 only
(B) 0 and 2 only
(C) 0 only
(D) -2 and 2 only
(E) $-2,0$, and 2
6) The function $y=x^{4}+b x^{2}+8 x+1$ has a horizontal tangent and a point of inflection for the same value of x. What must be the value of b ?
(A) -6
(B) -1
(C) 1
(D) 4
(E) 6
7) Let f be the function given by $f(x)=x^{3}$. What are all value of c that satisfy the conclusion of the Mean Value Theorem on the closed interval $[-1,2]$?
(A) 0 only
(B) 1 only
(C) $\sqrt{3}$
(D) -1 and 1
(E) $-\sqrt{3}$ and $\sqrt{3}$
8) What are all values of x for which the function $f(x)=x^{3}+6 x^{2}+9 x+1$ is increasing?
(A) $(-\infty,-3)$ only
(B) $(-3,-1)$ only
(C) $(-1, \infty)$ only
(D) $(-\infty,-3) \cup(-1, \infty)$
(E) $(-\infty,-3) \cup(1, \infty)$
9) If f is defined by $f(x)=\frac{5 x^{7}}{7}+4 x^{6}+6 x^{5}+x+1$, what are all the x-coordinates of the points of inflection of the graph of f ?
(A) -2 only
(B) 0 only
(C) 2 only
(D) -2 and 0 only
(E) $-2,0,2$
10)

The graph of $h(x)$ is shown above. Which of the following could be the graph of $y=h^{\prime}(x)$?
(A)

(B)

(C)

(D)

(E)

11. If, for all real numbers $x, f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$, which of the following curves could be part of the graph of f ?
(A)

(B)

(C)

(D)

(E)

12) The figure below shows the graph of the derivative of a function f. How many points of inflection does f have in the interval shown?
(A) None
(B) One
(C) Two
(D) Three
(E) Four

13) Which graph best represents the position of a particle, $\mathrm{s}(\mathrm{t})$, as a function of time, if the particle's velocity and acceleration are both positive?
(A)

(B)

(C)

(D)

(E)

14) Water is draining out of a rectangular tank whose base measures $50 \times 10 \mathrm{~cm}$ and height measures 20 cm . The water level of the tank is changing by 0.1 cm every second. The water is draining into another rectangular tank whose base measures $30 \times 20 \mathrm{~cm}$ and height measures 20 cm . How fast is the water level rising in the $2^{\text {nd }}$ tank?

