## 3.1 - 3.6 Practice AP Questions

Name: Answer Key

x -1 0 1 2 3

1) The graph of  $y = 3x^2 - x^3$  has a relative maximum at

$$y' = 6x - 3x^2$$

(C) (2,4) only

$$0 = 3x(2-x)$$

2) If the graph of  $f(x) = 2x^2 + k/x$  has a point of inflection at x = -1, then the value of k is

$$(A) -2$$

$$f(x) = 2x^{2} + kx^{-1}$$

$$f''(x) = 4 + 2kx^{-3}$$

$$0 = 4 + \frac{x^3}{2K}$$

$$-4 = \frac{2k}{x^3}$$

$$-2x^3=K$$

3) What are all value of x for which the graph of  $y = \frac{2}{4-x}$  is concave downward?

(A) No values of x

(D) 
$$x < -4$$

$$(E) \times 4$$

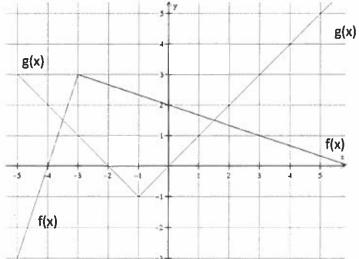
$$y'' = -4(4-x)^{-3}(-1)$$

$$y'' = \frac{4}{(4-x)^3}$$
 if  $(4-x)^3$  is negative,  
then  $\frac{4}{(4-x)^3}$  is negative

$$(4-x)^3 < 0$$

4) The functions f and g are piecewise linear functions whose graph are shown below. If h(x) = f(x)g(x), then

h'(3) =


(A) - 8/3

(B) - 1/3

(C) 0

(D) 2/3

(E) 8/3



5) At what value(s) of x does  $f(x) = x^4 - 8x^2$  have a relative minimum?

$$f'(x) = 4x^3 - 16x$$

$$0 = 4x(x^2-4)$$

6) The function  $y = x^4 + bx^2 + 8x + 1$  has a horizontal tangent and a point of inflection for the same value of x. What must be the value of b?

$$y = 4x^3 + 2bx + 8$$

$$4x^{3}+(-12x^{2})x+8=(2x^{2}+(-12x^{2})$$

x -3 -2 -1 0 1 2 3 F(x) - 0 + 0 - 0 +

(E)6

$$=12x^2=2b$$

$$-8x^{3} = -8$$

$$-6x^{2} = 6$$

$$-6(1)^{2} = 6$$

7) Let f be the function given by  $f(x) = x^3$ . What are all value of c that satisfy the conclusion of the Mean Value Theorem on the closed interval [-1, 2]?

$$f'(x) = 3x^{2}$$
  
 $3 = 3x^{2}$ 

(c)  $\sqrt{3}$ 

$$f(c) = \frac{8-1}{2-1} = \frac{9}{3} = 3$$

(E) 
$$-\sqrt{3}$$
 and  $\sqrt{3}$ 

8) What are all values of x for which the function  $f(x) = x^3 + 6x^2 + 9x + 1$  is increasing?

(A) 
$$(-\infty, -3)$$
 only

$$0 = 3(x^2 + 4x + 3)$$

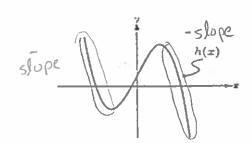
$$0 = 3(x^2 + 4x + 3)$$
  $\frac{x - 4 - 3 - 2 - 10}{F(x) + 0 - 0 + 0}$ 

the graph of f?

(B) 0 only

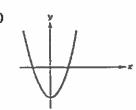
$$0 = 30x^{3}(x+2)(x+2)$$

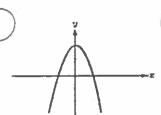
$$0 = 30x^{3}(x+2)(x+2)$$
  
 $x=0$   $x=-2$ 


$$f'(x) = 5x^{6} + 24x^{3} + 30x + 1$$

$$f''(x) = 30x^{5} + 120x^{4} + 120x^{3}$$

$$O = 30x^{3}(x^{2} + 4x + 4)$$

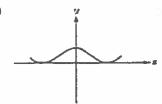


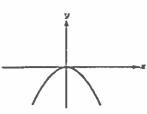



The graph of h(x) is shown above. Which of the following could be the graph of y = h'(x)?

(A)

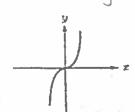




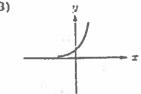


(C)



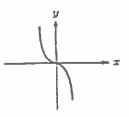
(D)



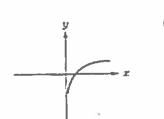

(E)



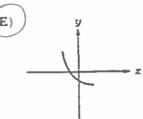

11. If, for all real numbers x, f'(x) < 0 and f''(x) > 0, which of the following curves could be part decreasing Concave up of the graph of f?


(A)



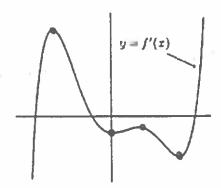

(B)



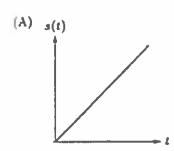

(C)

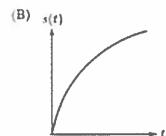


(D)

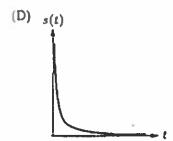


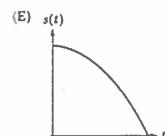

(E)



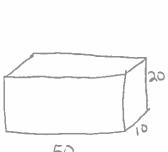


- loes f
- 12) The figure below shows the graph of the derivative of a function f. How many points of inflection does f have in the interval shown?
- (A) None
- (B) One
- (C) Two
- (D) Three







13) Which graph best represents the position of a particle, s(t), as a function of time, if the particle's velocity and acceleration are both positive?

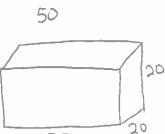












14) Water is draining out of a rectangular tank whose base measures 50 x 10 cm and height measures 20 cm. The water level of the tank is changing by 0.1 cm every second. The water is draining into another rectangular tank whose base measures 30 x 20 cm and height measures 20 cm. How fast is the water level rising in the 2<sup>nd</sup> tank?



$$V = Bh$$

$$\frac{dV}{dt} = B\frac{dh}{dt} + h\frac{dB}{dt}$$

$$\frac{dV}{dt} = 500\frac{dh}{dt} + 20(0)$$



30

$$\frac{dV}{dt} = 500(-.1)$$

$$\frac{2^{nd} Tank}{V = Bh}$$

$$\frac{dV}{dt} = B\frac{dh}{dt} + h\frac{dB}{dt}$$

$$50 = 600\frac{dh}{dt} + 20(0)$$

$$\frac{50}{600} = \frac{dh}{dt}$$

$$\frac{1}{4t} = \frac{1}{12} \frac{cm/s}{s}$$