1) A particle moves in the xy-plane so that its velocity vector at time t is $v(t)=\left\langle t^{2}, \sin \pi t\right\rangle$ and the particle's position vector at time $t=0$ is $\langle 1,0\rangle$. What is the position vector of the particle when $t=3$?
(A) $(9,1 / \pi)$
(B) $(10,2 / \pi)$
(C) $(6,-2 \pi)$
(D) $(10,2 \pi)$
(E) $(10,2)$
2) Which of the following is an equation of the line tangent to the curve with parametric equations $x=3 e^{-t}, y=6 e^{t}$ at the point where $t=0$?
(A) $2 x+y-12=0$
(B) $-2 x+y-12=0$
(C) $2 x+y-6=0$
(D) $-2 x+y-6=0$
(E) $2 x+y=0$
3) A particle moves on the x-axis so that at any time t its velocity $v(t)=\sin 2 t$ subject to the condition $x(0)=0$ where $x(t)$ is the position function. Which of the following is an expression for $\mathrm{x}(\mathrm{t})$?
(A) $\cos t 2 t+1 / 2$
(B) $-1 / 2 \sin 2 t+1 / 2$
(C) $-1 / 2 \cos 2 t$
(D) $-1 / 2 \cos 2 t+1 / 2$
(E) $-1 / 2 \cos 2 t-1 / 2$
4) (calc) Which of the following gives the area of the region enclosed by the graph of the polar curver$r=1+\cos \theta$?
(A) $\int_{0}^{\pi}\left(1+\cos ^{2} \theta\right) d \theta$
(B) $\int_{0}^{\pi}(1+\cos \theta)^{2} d \theta$
(C) $\int_{0}^{2 \pi}(1+\cos \theta) d \theta$
(D) $\int_{0}^{2 \pi}(1+\cos \theta)^{2} d \theta$
(E) $\frac{1}{2} \int_{0}^{2 \pi}\left(1+\cos ^{2} \theta\right) d \theta$
5) The curve in the $x y$-plane is defined parametrically by the equation $x=t^{2}+t$ and $y=t^{2}-t$. For what values of t is the tangent line to the curve horizontal?
(A) $t=-1$
(B) $t=-1 / 2$
(C) $t=0$
(D) $t=1 / 2$
(E) $t=1$

At time $t \geq 0$, a particle moving along a curve in the $x y$-plane has position $(x(t), y(t))$ with velocity vector $v(t)=\left(\cos \left(t^{2}\right), e^{0.5 t}\right)$. At $t=1$, the particle is at the point $(3,5)$.
(a) Find the x-coordinate of the position of the particle at time $t=2$.
(b) For $0<t<1$, there is a point on the curve at which the line tangent to the curve has a slope of 2 . At what time is the object at that point?
(c) Find the time at which the speed of the particle is 3 .
(d) Find the total distance traveled by the particle from time $t=0$ to time $t=1$.

2014 \#2 (Calculator)

The graphs of the polar curves $r=3$ and $r=3-2 \sin (2 \theta)$ are shown in the figure above for $0 \leq \theta \leq \pi$.
(a) Let R be the shaded region that is inside the graph of $r=3$ and inside the graph of $r=3-2 \sin (2 \theta)$. Find the area of R.
(b) For the curve $r=3-2 \sin (2 \theta)$, find the value of $\frac{d x}{d \theta}$ at $\theta=\frac{\pi}{6}$.
(c) The distance between the two curves changes for $0<\theta<\frac{\pi}{2}$.
 Find the rate at which the distance between the two curves is changing with respect to θ when $\theta=\frac{\pi}{3}$.
(d) A particle is moving along the curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=3$ for all times $t \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$.

