\qquad

1) If $f(x)=\sqrt{4 \sin x+2}$, then $f^{\prime}(0)=$
(A) -2
(B) 0
(C) 1
(D) $\sqrt{2} / 2$
(E) $\sqrt{2}$
2) A particle moves along the x-axis in such a way that its position at time t is given by $x(t)=\frac{1-t}{1+t}$. What is the acceleration of the particle at time $t=0$?
(A) -4
(B) -2
(C) $-3 / 5$
(D) 2
(E) 4
3) Let f be the function given by $f(x)=\tan x$ and let g be the function given by $g(x)=x^{2}$. At what value of x in the interval $0 \leq x \leq \pi$ do the graphs of f and g have parallel tangent lines?
(A) 0
(B) 0.660
(C) 2.083
(D) 2.194
(E) 2.207
4) Two functions $f(x)$ and $g(x)$ are differentiable. If $h(x)=x^{2} g(x)-f(3 x+1)$, determine the value of $h^{\prime}(x)$.
(A) $2 x g^{\prime}(x)-3 f^{\prime}(3 x+1)$
(B) $2 x g^{\prime}(x)-f^{\prime}(3)$
(C) $x^{2} g^{\prime}(x)+2 x g(x)-f^{\prime}(3 x+1)$
(D) $x^{2} g^{\prime}(x)+2 x g(x)-3 f^{\prime}(3 x+1)$
(E) $x^{2} g^{\prime}(x)-f^{\prime}(3 x+1)$
5) Let f and g be differentiable functions such that

$$
\begin{aligned}
& f(1)=4, g(1)=3, f^{\prime}(3)=-5 \\
& f^{\prime}(1)=-4, g^{\prime}(1)=-3, g^{\prime}(3)=2
\end{aligned}
$$

If $h(x)=f(g(x))$, then $h^{\prime}(1)=$
(A) -9
(B) 15
(C) 0
(D) -5
(E) -12
6) If $f(x)=(2+3 x)^{4}$, then the fourth derivative of f is
(A) 0
(B) 4 !(3)
(C) $4!\left(3^{4}\right)$
(D) $4!\left(3^{5}\right)$
(E) 4 ! $(2+3 x)$
7) The $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$ at $\mathrm{x}=3$ is
(A) -1
(B) 0
(C) 1
(D) 3
(E) nonexistent
8) If $y=7$ is a horizontal asymptote of a rational function f, then which of the following must be true?
(A) $\lim _{x \rightarrow 7} f(x)=\infty$
(B) $\lim _{x \rightarrow-\infty} f(x)=-7$
(C) $\lim _{x \rightarrow 0} f(x)=7$
(D) $\lim _{x \rightarrow 7} f(x)=0$
(E) $\lim _{x \rightarrow \infty} f(x)=7$
9) Let $f(x)$ be a continuous and differentiable function. The table below gives the values of $f(x)$ and $f^{\prime}(x)$, the derivative of $\mathrm{f}(\mathrm{x})$, at several values. If $\mathrm{g}(\mathrm{x})=\frac{1}{f(x)}$, what is the value of $\mathrm{g}^{\prime}(2)$?
(A) $-1 / 8$
(B) 0
(C) $1 / 16$

x	1	2	3	4
$f(x)$	-3	-8	-9	0
$f^{\prime}(x)$	-5	-4	3	16

(D) $1 / 64$
(E) 16
10) If $f(x)=\cos ^{2}(x)$, then $f^{\prime \prime}(\pi)=$
(A) -2
(B) 0
(C) 1
(D) 2
(E) 2π
11) Two particles leave the origin at the same time and move along the y-axis with their respective positions determined by the functions $y_{1}=\cos 2 t$ and $y_{2}=4 \operatorname{sint}$ for $0<x<6$. For how many values of t do the particles have the same acceleration?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
12) Evaluate $\lim _{h \rightarrow 0} \frac{5\left(\frac{1}{2}+h\right)^{4}-5\left(\frac{1}{2}\right)^{4}}{h}$.
(A) $5 / 2$
(B) $5 / 16$
(C) 40
(D) 160
(E) The limit DNE
13) If f is continuous on $[2,6]$, with $f(2)=20$ and $f(6)=10$, then the Intermediate Value Theorem says which of the following is true?
I. $\quad f(x)=25$ does not have a solution on $[2,6]$
II. $f(x)=17$ has a solution on $[2,6]$
III. $f(x)=0$ has a solution on $[2,6]$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

