\qquad

1) Use a $6^{\text {th }}$ degree Maclaurin polynomial to approximate $\cos (.4)$
2) What are all values of x for which the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} x^{n}$ converges?
(A) $-\mathrm{e}<\mathrm{x} \leq \mathrm{e}$
(B) $-1 \leq x<1$
(C) $-\mathrm{e} \leq \mathrm{x}<\mathrm{e}$
(D) $-1<x \leq 1$
(E) $-1 \leq x \leq 1$
3) The Taylor series for $\frac{\sin \left(x^{2}\right)}{x^{2}}$ centered at $\mathrm{x}=0$ is
(A) $\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}$
(B) $\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k+1)!}$
(C) $\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k)!}$
(D) $\frac{1}{x}+\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{2 k-1}}{(2 k-1)!}$
(E) $\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{4 k}}{(2 k+1)!}$
4) The figure to the right shows the graph of $y=f(x)$ and $y=T(x)$ where $T(x)$ is a Taylor polynomial for $f(x)$ centered at zero. Which of the following statements are true?
I. $T(0.5)$ is a good approximation for $f(0.5)$
II. $\mathrm{T}(1.5)$ is a good approximation for $\mathrm{f}(1.5)$
III. $T(0)=f(0)$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

5) The first three nonzero terms in the Taylor series about $x=0$ of $x e^{-x}$ are
(A) $x-x^{2}-\frac{x^{3}}{2!}$
(B) $x+x^{2}+\frac{x^{3}}{2!}$
(C) $-x+x^{2}-\frac{x^{3}}{2!}$
(D) $x-x^{2}+\frac{x^{3}}{2!}$
(E) $1-x+\frac{x^{2}}{2!}$
6) For all x if $\mathrm{f}(\mathrm{x})=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n+1}}{(2 n+1)!}$, then $\mathrm{f}^{\prime}(\mathrm{x})=$
(A) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n+1)!}$
(B) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
(C) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n+2)!}$
(D) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n)!}$
(E) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}$
7) Let E be the error when the Taylor polynomial $\mathrm{T}(\mathrm{x})=x-\frac{x^{3}}{3!}$ is used to approximate $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ at $\mathrm{x}=0.5$. Which of the following is true?
(A) $|E|<0.0001$
(B) $0.0001<|E|<0.0003$
(C) $0.0003<|E|<0.005$
(D) $0.005<|E|<0.007$
(E) $0.07<|E|$
(8) The Taylor Series of a function $\mathrm{f}(\mathrm{x})$ about $\mathrm{x}=3$ is given by

$$
f(x)=1+\frac{3(x-3)}{1!}+\frac{5(x-3)^{2}}{2!}+\frac{7(x-3)^{3}}{3!}+\ldots+\frac{(2 n+1)(x-3)^{n}}{n!}+\ldots
$$

What is the value of $f^{\prime \prime \prime}(3)$?
(A) 0
(B) 1.167
(C) 2.5
(D) 5
(E) 7

