AP Questions Tay/Mac #2

Name:

6. The function g has derivatives of all orders, and the Maclaurin series for g is

2012 AP Test

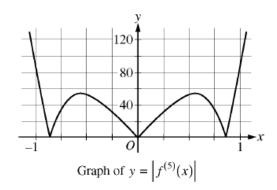
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^3}{5} + \frac{x^5}{7} - \cdots$$

- (a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
- (b) The Maclaurin series for g evaluated at $x = \frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0. The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0\\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

2010 AP Test

- 6. The function f, defined above, has derivatives of all orders. Let g be the function defined by $g(x) = 1 + \int_0^x f(t) dt$.
 - (a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about x = 0.
 - (b) Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at x = 0. Give a reason for your answer.
 - (c) Write the fifth-degree Taylor polynomial for g about x = 0.
 - (d) The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the value of g(1). Explain why this estimate differs from the actual value of g(1) by less than $\frac{1}{6!}$.



- 6. Let $f(x) = \sin(x^2) + \cos x$. The graph of $y = |f^{(5)}(x)|$ is shown above.
 - (a) Write the first four nonzero terms of the Taylor series for $\sin x$ about x = 0, and write the first four nonzero terms of the Taylor series for $\sin(x^2)$ about x = 0.
 - (b) Write the first four nonzero terms of the Taylor series for $\cos x$ about x = 0. Use this series and the series for $\sin(x^2)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about x = 0.
 - (c) Find the value of $f^{(6)}(0)$.
 - (d) Let $P_4(x)$ be the fourth-degree Taylor polynomial for f about x = 0. Using information from the graph of $y = \left| f^{(5)}(x) \right|$ shown above, show that $\left| P_4 \left(\frac{1}{4} \right) f \left(\frac{1}{4} \right) \right| < \frac{1}{3000}$.