\qquad
The Maclaurin series for e^{x} is $\mathrm{e}^{\mathrm{x}}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots+\frac{x^{n}}{n!}+\ldots$ The continuous function f is defined by
$f(x)=\frac{e^{(x-1)^{2}}-1}{(x-1)^{2}}$ for $\mathrm{x} \neq 1$ and $f(1)=1$. The function f has derivatives of all orders at $\mathrm{x}=1$.
(a) Write the first four nonzero terms and the general term of the Taylor series for $e^{(x-1)^{2}}$ about $\mathrm{x}=1$.
(b) Use the Taylor series found in part (a) to write the first four nonzero terms and the general term of the Taylor series for f about $\mathrm{x}=1$.
(c) Use the ratio test to find the interval of convergence for the Taylor series found in part (b).
(d) Use the Taylor series for f about $\mathrm{x}=1$ to determine whether the graph of f has any points of inflection.

Let f be the function given by $f(x)=e^{-x^{2}}$.
(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=0$.
(b) Use your answer to part (a) to find $\lim _{x \rightarrow 0} \frac{1-x^{2}-f(x)}{x^{4}}$.
(c) Write the first four nonzero terms of the Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$ about $\mathrm{x}=0$. Use the first two terms of your answer to estimate $\int_{0}^{1 / 2} e^{-t^{2}} d t$.
(d) Explain why the estimate found in part (c) differs from the actual value of $\int_{0}^{1 / 2} e^{-t^{2}} d t$ by less than $\frac{1}{200}$.

The function f is defined by the power series

$$
f(x)=-\frac{x}{2}+\frac{2 x^{2}}{3}-\frac{3 x^{3}}{4}+\ldots+\frac{(-1)^{n} n x^{n}}{n+1}+\ldots
$$

for all real numbers x for which the series converges. The function g is defined by the power series

$$
g(x)=1-\frac{x}{2!}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}+\ldots+\frac{(-1)^{n} x^{n}}{(2 n)!}+\ldots
$$

for all real numbers x for which the series converges.
(a) Find the interval of convergence of the power series for f. Justify your answer.
(b) The graph of $y=f(x)-g(x)$ passes through the point $(0,-1)$. Find $y^{\prime}(0)$ and $y^{\prime \prime}(0)$. Determine whether y has a relative minimum, a relative maximum, or neither at $x=0$. Give a reason for you answer.

