\qquad

1) Answer the following using the graph of $f(x)$ shown below.
(a) $f(0)=$
(b) $f(3)=$
(c) $\lim _{x \rightarrow-5} f(x)=$
(d) $\lim _{x \rightarrow 0^{+}} f(x)=$
(e) $\lim _{x \rightarrow 3^{-}} f(x)=$

2) Let $f(x)=\left\{\begin{array}{l}3 x^{2}+1, \\ 4 x<1 \\ 4 x,\end{array} \quad x \geq 1\right.$. Which of the following is true?
I. $f(x)$ is continuous at $x=1$
II. $f(x)$ is differentiable at $x=1$
III. $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
3) $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{6}+h\right)-\cos \left(\frac{\pi}{6}\right)}{h}=$
(A) Does not exist
(B) $1 / 2$
(C) $-1 / 2$
(D) $\sqrt{3} / 2$
(E) $-\sqrt{3} / 2$
4) Find the value of the limit: $\lim _{h \rightarrow 0} \frac{\sqrt{\tan (2 x+2 h)}-\sqrt{\tan (2 x)}}{h}$
5) Let f be a differentiable function with $f(2)=3$ and $f^{\prime}(2)=-5$, and let g be the function defined by $g(x)=x \cdot f(x)$. What is the equation for the line tangent to the graph of g at the point where $x=2$?

Find the derivatives of the following functions.
6) $f(x)=\left(3 x^{2}+7\right)\left(x^{2}-2 x+3\right)$
7) $f(x)=\sqrt{x} \cdot \sin x$
8) $f(x)=3 x^{2} \sec ^{3} x$
9) $f(x)=\frac{x^{4}+x}{\tan ^{2} x}$
10) Given the equation $y=\sin (3 x+4 y)$, find $\frac{d y}{d x}$.
11) Suppose that f and g are twice differentiable functions having selected values given in the table below.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	5	4	2	7
2	8	6	-6	-4

If $h(x)=f(g(x))$, what is the value of $h^{\prime}(x)$ at the point where $x=1$?
12) A particle moves along the x-axis according to the position function $x(t)=3 \sin (2 t)+1$.
(a) Determine the instantaneous velocity of the particle at $t=\pi$. Which direction is the particle moving?
(b) What is the acceleration of the particle at $t=\frac{\pi}{4}$?
(c) Is the particle speeding up or slowing down at $t=\frac{\pi}{4}$? Justify your answer.
13) If the nth derivative of y is denoted as $y^{(n)}$ and $y=-\sin x$, then $y^{(14)}$ is the same as
(A) y
(B) $\frac{d y}{d x}$
(C) $\frac{d^{2} y}{d x^{2}}$
(D) $\frac{d^{3} y}{d x^{3}}$
14)

The graph of $y=f(x)$ on the closed interval $[0,4]$ is shown above. Which of the following could be the graph of $y=f^{\prime}(x)$?
(A)

(B)

(C)

t (hours)	0	1	3	4	7	8	9
$\mathrm{~L}(\mathrm{t})$ (people)	120	156	176	126	150	80	0

Concert tickets went on sale at noon $(t=0)$ and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time t is modeled by a twice-differentiable function L for $0 \leq t \leq 9$. Values of $L(t)$ at various times t are shown in the table above.
(a) Use the data in the tale to estimate the rate at which the number of people waiting in line was changing at 5:30 P.M. ($\mathrm{t}=5.5$). Show the computations that lead to your answer. Indicate units of measure.
(b) For $0 \leq t \leq 9$, what is the fewest number of times at which $\mathrm{L}^{\prime}(\mathrm{t})$ must equal 0 ? Give a reason for your answer.
(c) Is there a time on the interval [1, 4] where the rate at which the number of people waiting in line was decreasing at a rate of 10 people per hour? Justify your answer.
16) The figure below shows the graph of f ', the derivative of a twice differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f ' has horizontal tangent lines at $x=1, x=3$, and $x=5$, and the function f is defined for all real numbers.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local maximum. Justify your answer.

(b) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(c) Does the tangent line to the graph of $y=f(x)$ at the point where $x=4$ lie above or below the curve near that point? Justify your response.

