Calculus AB Review Limits and Derivatives Name: AVBWe a K(Z’%L

1) Answer the following using the graph of f(x) shown below.
(a) f(0) = - |
(b) f(3) = "N °

(e imy_s f(x)=O 5 | |/c|’ L]
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(d) limy e f(x) = - \{,

(&) limgoa- f(x) = |

3x2+1,x<1

2) Let f(x) = { . Which of the following is true?
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Jtan(2x+2h) - ftan(2x)
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4) Find the value of the limit: limy_q

5) Let f be a differentiable function with f{2} = 3 and f (2} =-5, and let g be the function defined by
g(x) = x- f(x). What is the equation for the line tangent to the graph of g at the point where x = 2?
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Find the derivatives of the following functions.
6) f{x) = (3x% + 7)(x* — 2x + 3)

()= 3 +T)(2x-2) + (x* 33 (%)

7) fix) = Vx - sinx \
Fr(x)= K 2cosx + Sin (5x )
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10) Given the equation y = sin(3x + 4y), find %
dj’ - cos(3x gy (3 F4S 4 )
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11) Suppose that f and g are twice differentiable functions having selected values given in the table below.

X fix) f'lx} afx) g'x)
1 5 4 2 7
2 8 6 -6 -4
If hix) = fla(x)), what is the value of h’(x) at the point where x = 1?
INOER

LX) = F(g00) j(")/L‘(i F(n

RO NCORF I



12) A particle moves along the x-axis according to the position function x(t} = 3sin(2t) + 1.

{a) Determine the instantaneous velocity of the particle at t = n. Which direction is the particle moving?
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(b) What is the acceleration of the particle at t =E ?
alt) - 6sm(t) ¥ al )= -2 sin(D)
o
alt): -1 sin(t) al @)= -17

(c) Is the particle speeding up or slowing down att = %? Justify your answer.
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13) If the nth derivative of y is denoted as y("’ and y = -sinx, then y‘“' is the same as
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The graph of y = f{x) on the closed interval [0, 4] is shown above. Which of the following could be the graph of

y=Ffx)?
(A) ";. (B) 1 (c) ¥ .
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15) t {hours) 0 1 3 4 7 8
L(t} (people} { 120 156 176 126 150 80

Concert tickets went on sale at noon (t = 0) and were sold out within 9 hours. The number of people waiting
in line to purchase tickets at time t is modeled by a twice-differentiable function Lfor 0 <t < 9. Values of L(t)
at various times t are shown in the table above.

{a) Use the data in the tale to estimate the rate at which the number of people waiting in line was changing at
5:30 P.M. {t =5.5). Show the computations that lead to your answer. Indicate units of measure.
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(b} For 0 £t £ 9, what is the fewest number of times at which L’{t) must equal 0? Give a reason for your

answer. 3 f}meﬁ is -ﬂ,& ‘Fﬁweﬁi, L\H)go UJLlen SW‘l‘CL‘"':j {[am .n(.ffﬂ‘uﬂj 1‘3
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(c) Is there a ti{)ne on the interval [1, l|1l] where the rate at which the number of people waiting in line was
decreasing at & people per hour? Justify your answer.
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16) The figure below shows the graph of f/, the derivative of a twice differentiable function f, on the closed
interval 0 < x < 8. The graph of f* has horizontal tangent lines at x = 1, x = 3, and x = 5, and the function fis
defined for all real numbers.
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(a) Find all values of x on the open interval 0 < x < 8 for which the o
function f has a local maximum. Justify your answer. ‘. ‘
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(b} On what open intervals contained in 0 < x < 8 is the graph of f both concave down and increasing? Explain your

reasoning. (o,l) and (BH) The slope is pasihive and decceasing

{c) Does the tangent line to the graph of y = f(x} at the point where x = 4 lie above or below the curve near that point?
Justify your response.  7he 5“‘:!, N y 14 concaYe down at k<Y , 59 {ie fa ﬁgc.d‘
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