Name: \qquad

1) A faucet was turned on at $t=0$, and t minutes later water was flowing into a barrel at a rate of $t^{2}+4 t$ gallons per minute, $0 \leq t \leq 5$.
a) How much water was added to the barrel during these 5 minutes?
b) Find the average flow rate for these five minutes.
2) (from 2000 Free Response) Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \leq t \leq 120$. At $t=0$, the tank contains 30 gallons of water.
a) How many gallons of water leak out of the tank from $t=0$ to $t=3$ minutes?
b) How many gallons of water are in the tank at time $t=3$ minutes?
c) Write an expression for $A(t)$, the total number of gallons of water in the tank at time t.
d) At what time t, for $0 \leq t \leq 120$, is the water in the tank a maximum? Justify your answer.
3) If $w^{\prime}(t)$ is the rate of growth of a child in pounds per year, what does $\int_{5}^{10} w^{\prime}(t) d t$ represent?
4) A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{15} n^{\prime}(t) d t$ represent?
5) The graph of the function f, consisting of three line segments, is shown on the right.

Let $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find $g(2), g(4), g(-2)$.

(b) Find $g^{\prime}(0)$ and $g^{\prime}(3)$.
(c) Find the instantaneous rate of change of g with respect to x at $x=2$.
(d) Find the absolute maximum value of g on the interval $[-2,4]$. Justify your answer.
(e) The second derivative of g is not defined at $x=1$ and at $x=2$. Which of these values are x-coordinates of points of inflection of the graph of g ? Justify your answer.
6) Let $H(x)=\int_{0}^{x} f(t) d t$ where f is the continuous function with domain [0, 12] shown on the right.
(a) Find $H(0)$.
(b) On what interval(s) of x is H increasing? Justify your answer.
(c) On what interval(s) of x is H concave up? Justify your answer.

(d) Is $H(12)$ positive or negative? Explain.
(e) For what value of x does H achieve its maximum value? Explain.
8) If $\int_{2}^{5}(2 f(x)+3) d x=17$, find $\int_{2}^{5} f(x) d x$.
9) Consider the function f that is continuous on the interval $[-5,5]$ and for which $\int_{0}^{5} f(x) d x=4$. Evaluate:
(a) $\int_{0}^{5}(f(x)+2) d x=$
(c) $\int_{-5}^{5} f(x) d x(f$ is even $)=$
(b) $\int_{-2}^{3} f(x+2) d x=$
(d) $\int_{-5}^{5} f(x) d x(f$ is odd $)=$
10) A bowl of soup is placed on the kitchen counter to cool. The temperature of the soup is given in the table below.
(a) Find $\int_{0}^{12} T^{\prime}(x) d x$.

Time t (minutes)	0	5	8	12
Temperature $T(x)\left({ }^{\circ} \mathrm{F}\right)$	105	99	97	93

(b) Find the average rate of change of $T(x)$ over the time interval $t=5$ to $t=8$ minutes.
11) If f and g are continuous functions such that $g^{\prime}(x)=f(x)$ for all x, then $\int_{2}^{3} f(x) d x=$
(A) $g^{\prime}(2)-g^{\prime}(3)$
(B) $g^{\prime}(3)-g^{\prime}(2)$
(C) $g(3)-g(2)$
(D) $f(3)-f(2)$
(E) $f^{\prime}(3)-f^{\prime}(2)$

